Răspuns :
a)ΔABC, mas<A=90 ⇒AC²=BC²-AB²= 100-36=64 ⇒AC=8
sin<C= AB/BC=6/10=3/5
cos<C=AC/BC=8/10=4/5
tg<B=AC/AB=8/6=4/3
ctg<B=AB/AC=6/8=3/4
b)ΔABC, mas< A=90 ⇒BC²=AC²+AB²= 5² +(5√3)²=25 + 75=100 ⇒BC=10
sin<B=AC/BC= 5√3/10 =√3/2 ⇒mas<B=60
cos<B=AB/BC=5/10=1/2
tg<C=AB/AC= 5/5√3= 1/√3= √3/3
ctg<C=AC/AB=5√3/5=√3
sin<C= AB/BC=6/10=3/5
cos<C=AC/BC=8/10=4/5
tg<B=AC/AB=8/6=4/3
ctg<B=AB/AC=6/8=3/4
b)ΔABC, mas< A=90 ⇒BC²=AC²+AB²= 5² +(5√3)²=25 + 75=100 ⇒BC=10
sin<B=AC/BC= 5√3/10 =√3/2 ⇒mas<B=60
cos<B=AB/BC=5/10=1/2
tg<C=AB/AC= 5/5√3= 1/√3= √3/3
ctg<C=AC/AB=5√3/5=√3
b)T.P. =>BC^2=AB^2+AC^2 =>BC^2=25+(5radical3)^2
BC=radical din 100=10cm
sinB=AC/BC=/10
cosB=AB/BC=5/10
tgC=sinC/cosC=0.5/(5 radical din 3/10)
BC=radical din 100=10cm
sinB=AC/BC=/10
cosB=AB/BC=5/10
tgC=sinC/cosC=0.5/(5 radical din 3/10)