Răspuns:
Explicație pas cu pas:
b)
|x - 2| ≤ 3
-3 ≤ x - 2 ≤ 3
-3 +2 ≤ x - 2 + 2 ≤ 3 + 2
-1 ≤ x ≤ 5
x∈ [-1 , 5]
c)
|1 - x| ≤0
0 ≤ 1 - x ≤ 0
0 - 1 ≤ 1 - x - 1 ≤ 0 - 1
- 1 ≤ - x ≤ - 1
1 ≥ x ≥ 1
x = 1
d)
- 15 · |x - 1| > -105 inmultim cu -1
15 · |x - 1| < 105
|x - 1| < 7
-7 < x - 1 < 7
- 7 + 1 < x - 1 + 1 < 7 + 1
-6 < x < 8
x ∈ (6 , 8)
e)
3 - |4·x - 1| ≥ 0
|4·x - 1| ≥ -3
|4·x - 1| ≤ 3
-3 ≤ 4·x - 1 ≤ 3
-3 + 1 ≤ 4·x - 1 + 1 ≤ 3 + 1
-2 ≤ 4·x ≤ 4
-2/4 ≤ 4·x/4 ≤ 4/4
-0,5 ≤ x ≤ 1
x∈ [-0,5 , 1]