Răspuns :
Răspuns: [tex]a=\big(2^{20} \cdot 3\big)^{2} - este~patrat ~perfect[/tex]
Explicație pas cu pas:
[tex]a=4^{20}\cdot3 ^{}+2^{40}\cdot 5+2^{40}[/tex]
[tex]a=(2^2)^{20}\cdot3 ^{}+2^{40}\cdot 5+2^{40}[/tex]
[tex]a=2^{2\cdot20}\cdot3 ^{}+2^{40}\cdot 5+2^{40}[/tex]
[tex]a=2^{40}\cdot3 ^{}+2^{40}\cdot 5+2^{40}[/tex]
[tex]a=2^{40}\cdot\big(3 ^{}+ 5+1\big)[/tex]
[tex]a=2^{40}\cdot 9[/tex]
[tex]a=2^{40}\cdot 3^{2}[/tex]
[tex]a=(2^{20})^{2} \cdot 3^{2}[/tex]
[tex]\boxed{a=\big(2^{20} \cdot 3\big)^{2} - patrat ~perfect}[/tex]
Răspuns:
Explicație pas cu pas:
4^20 = (2^2)^20 = 2^40
a = 2^40*3 + 2^40*5 + 2^40
= 2^40*(3 + 5 + 1)
= 9*2^40
= 3^2*(2^20)^2
= (3*2^20)^2 patrat perfect