Răspuns :

Răspuns:

Notezi

S=1/2²+1/2³+1/2⁴+...+1/2¹⁰

2S=1/2+1/2²+1/2³+1/2⁴...+1/2⁹

2S-S=1/2+1/2²+1/2³+...+1/2⁹-1/2²-1/2³-1/2⁴-...-1/2⁹-1/2¹⁰=  se  reduc  termenii   opusi=

1/2-1/2¹⁰

1/2-(1/2-1/2¹⁰)=1/2-1/2+1/2¹⁰=

1/2¹⁰

Explicație pas cu pas:

Răspuns:

1/2^10

Explicație pas cu pas:

Metoda 1:

1/2 - 1/4 - 1/8 - 1/16 - ... - 1/2^10 =

1/4 - 1(8 - 1/16 - ... - 1/2^10 =

1/8 - 1/16 - ... - 1/2^10 =

s.a.m.d..... se calculeaza primii doi termeni...

in final ajungem la

1/2^9 - 1/2^10 = 2-1  /  2^10 =

1/2^10.

Metoda a 2-a:

In paranteza avem suma S a n = 9 termeni consecutivi dintr-o progresie geometrica de ratie q = 1/2 si primul termen a1 = 1/2^2

S = a1(1-q^n)(1-q) = (1/2^2) x (1-1/2^9)/(1-1/2) = (1 - 1/2^9)/2

si astfel avem

1/2 -S = 1/2 - 1/2 + 1/2^10 =

1/2^10.