[tex]\displaystyle\bf\\a=\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}~~\Big|~(ridicam~la~patrat)\\\\\\a^2=\left(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}\right)^2\\\\\\a^2=\left(\sqrt{4-\sqrt{15}}\right)^2+\left(\sqrt{4+\sqrt{15}}\right)^2+2\left(\sqrt{4-\sqrt{15}}\right)\left(\sqrt{4+\sqrt{15}}\right)[/tex]
.
[tex]\displaystyle\bf\\a^2=4-\sqrt{15}+4+\sqrt{15}+2\sqrt{\Big(4-\sqrt{15}\Big)\Big(4+\sqrt{15}\Big)}\\\\\\a^2=4+4\underbrace{-\sqrt{15}+\sqrt{15}}_{=~0}+2\sqrt{4^2-\Big(\sqrt{15}\Big)^2} \\\\\\a^2=4+4+2\sqrt{16-15}\\\\a^2=8+2\sqrt{1}\\\\a^2=8+2\\\\a^2=10\\\\\boxed{\bf a=\sqrt{10}}[/tex]