Răspuns :
[tex]\bf 5. \\ \\ \it \ \ \Rightarrow a=\dfrac{1}{\sqrt3}(1-1+\dfrac{1}{3})=\dfrac{1}{3\sqrt3}\\ \\ \\ \Rightarrow b=\dfrac{\sqrt6}{\sqrt8}(1+\dfrac{3}{2})=\dfrac{\sqrt3}{2}\cdot\dfrac{5}{2}=\dfrac{5\sqrt3}{4}\\ \\ \\ a\cdot b=\dfrac{1}{3\sqrt3}\cdot\dfrac{5\sqrt3}{4}=\dfrac{5}{12}[/tex]
7.
[tex]\it x\sqrt{27}-\sqrt{12}=\sqrt{300}|_{:\sqrt3}\ \Rightarrow 3x-2=10|_{+2} \Rightarrow 3x=12|_{:3} \Rightarrow x=4[/tex]
Răspuns:
Explicație pas cu pas:
5.
a = 1/√3 - 2/2√3 + 1/3√3 = 1/√3 - 1/√3 + 1/3√3 = 1/3√3
b = √6/√8 + √54/√32 = √3/2 + 3√6/4√2 = √3/2 + 3√3/4 = 2√3/4 + 3√3/4
= 5√3/4
a*b = 1/3√3 *5√3/4 = 5/12
_______________
7.
x√27 - √12 = √300
3x√3 - 2√3 = 10√3
√3*(3x - 2) = 10√3
3x - 2 = 10
3x = 10 + 2 = 12
x = 12 : 3 = 4
_________________
8.
√4*y + √72 = √128
2√y + 6√2 = 8√2
2√y = 8√2 - 6√2 = 2√2
y = 2