1.
[tex]( \frac{3}{ \sqrt{12} } - \frac{15}{5 \sqrt{3} } + \frac{9}{ \sqrt{27} } ) - ( \frac{12}{ \sqrt{48} } + \frac{45}{ \sqrt{75} } + \frac{24}{8 \sqrt{3} } ) \\ ( \frac{3}{2 \sqrt{3} } - \frac{3}{ \sqrt{3} } + \frac{3}{ \sqrt{3} } ) - ( \frac{3}{ \sqrt{3} } + \frac{9}{ \sqrt{3} } + \frac{3}{ \sqrt{3} } ) \\ \frac{3}{2 \sqrt{3} } - \frac{15}{ \sqrt{3} } = \frac{ \sqrt{3} }{2} - \frac{15}{ \sqrt{3} } = \\ \frac{ \sqrt{3} }{2} - 5 \sqrt{3 } = - \frac{9 \sqrt{3} }{2} [/tex]
2.
[tex]( \frac{3}{ \sqrt{2} } - \frac{5 \sqrt{2} }{4} ) - ( \frac{18 \sqrt{2} }{6} + \frac{12}{3 \sqrt{2} } ) = \\ \frac{3 \sqrt{2} }{2 } - \frac{5 \sqrt{2} }{4} - (3 \sqrt{2} + 2 \sqrt{2} ) = \\ \frac{3 \sqrt{2} }{2} - \frac{5 { \sqrt{2} } }{4} - 5 \sqrt{2} = - \frac{19 \sqrt{2} }{4} [/tex]