Răspuns:
Explicație pas cu pas:
a)
2^2*5 + 2^2*11 = 2^2*(5 + 11) = 2^2*16 = 2^2*2^4 = 2^6
√2^6 = 2^3 = 8
_________________
b)
7^4*45 + 7^4*39 - 7^4*3 = 7^4*(45 + 39 - 3) = 7^4*91 = 7^4*3^4 = (7*3)^4 = 21^4
√21^4 = 21^2 = 441
_________________
c)
5^2*11 + 19*5^2 + 5^2*6 = 5^2*(11 + 19 + 6) = 5^2*36 = 5^2*6^2 = (5*6)^2
= 30^2
√30^2 = 30
_________________
d)
3^4*19 - 3^4*10 = 3^4*(19 - 10) = 3^4*9 = 3^4*3^2 = 3^6
√3^6 = 3^3 = 17
_________________
e)
2^2*3^4 + 2^2*3^2 + 2^3*3^3
= 2^2*3^2*(3^2 + 1 + 2*3) = 2^2*3^2*(9 + 1 + 6) = 2^2*3^2*16 = 2^2*3^2*2^4
= 2^6*3^2
√2^6*3^2 = 2^3*3 = 8*3 = 24
_________________
f)
2^4*5^2 + 2^3*5 + 1 = (2^2*5)^2 + 2*(2^2*5) + 1 = (2^2*5 + 1)^2
= (4*5 + 1)^2 = 21^2
√21^2 = 21
________________
g)
3^4 + 2*3^2*5^2 + 5^4 = (3^2 + 5^2)^2 = (9 + 25)^2 = 34^2
√34^2 = 34
________________
h)
11^2 - 2*11*15 + 15^2 = (11 - 15)^2 = (-4)^2 = 16
√16 = 4
__________________
i)
48^2 - 2*48*13 + 13^2 = (48 - 13)^2 = 35^2
√35^2 = 35