doua numere reale pozitive au media geometrica egala cu 8radical5 . Determina cele doua numere , stiind ca unul dintre ele este egal cu ocincime din celalalt
DAU COROANA!!!!

Răspuns :

Răspuns:

8; 40.

Explicație pas cu pas:

[tex]x>0,~y>0,~mg=\sqrt{x*y}, ~x=\frac{1}{5}y,~si~mg=8\sqrt{5}.~Deci~\sqrt{\frac{1}{5}y*y } =8\sqrt{5},~\sqrt{y^{2}*\frac{1}{5} } = 8\sqrt{5},~y*\sqrt{\frac{1}{5} }=8\sqrt{5},~y*\frac{1}{\sqrt{5} }=8\sqrt{5},~y=8\sqrt{5}: \frac{1}{\sqrt{5} }=8\sqrt{5}*\frac{\sqrt{5} }{1} = 8\sqrt{5}*\sqrt{5}=8*(  \sqrt{5})^{2}=8*5=40.~deci y=40,~iar~x=\frac{1}{5}*y=\frac{1}{5}*40=8[/tex]

[tex]\it Vom\ nota\ cele\ dou\breve{a}\ numere\ pozitive\ cu\ x\ \c{s}i\ \dfrac{x}{5}\\ \\ m_g=\sqrt{x\cdot\dfrac{x}{5}}=8\sqrt5\ \Rightarrow \sqrt{\dfrac{x^2}{5}}=\sqrt{8^2\cdot5} \Rightarrow \dfrac{x^2}{5}=8^2\cdot5 \Rightarrow x^2=8^2\cdot5^2 \Rightarrow\\ \\ \\ \Rightarrow x=8\cdot5=40[/tex]