Răspuns:
Explicație pas cu pas:
a) U ([tex]9^{n}[/tex]) ∈ {1, 9}, U([tex]9^{131})[/tex] = 9
b) U ([tex]3^{n}[/tex]) ∈ {3, 9, 7, 1}, U([tex]3^{24})[/tex] = 1
c) U ([tex]11^{n}[/tex]) ∈ {1}, U([tex]11^{304})[/tex] = 1
d) U ([tex]4^{n}[/tex]) ∈ {4,6}, U([tex]9^{n})[/tex] ∈ {1, 9}
U ([tex]4^{136}[/tex]) = 6, U([tex]9^{81})[/tex] = 9
U ([tex]4^{136}[/tex]) + U([tex]9^{81})[/tex] = 5
e) U ([tex]6^{n}[/tex]) ∈ {6}, U([tex]4^{n})[/tex] ∈ {4,6}
U ([tex]6^{72}[/tex]) = 6, U([tex]4^{13})[/tex] = 4
U ([tex]6^{72}[/tex]) - U([tex]4^{13})[/tex] = 2