Răspuns :

Explicație pas cu pas:

N)

[tex]( \sqrt{2 } + x) {}^{2} [/tex]

[tex]( \sqrt{2} ) {}^{2} + 2 \times \sqrt{2} \times x + x { }^{2} [/tex]

[tex] \sqrt{4} + 2 \sqrt{2} x + x {}^{2} [/tex]

[tex]2 + 2 \sqrt{2} x + x {}^{2} [/tex]

O)

[tex]( \sqrt{3 } + a) {}^{2} [/tex]

[tex]( \sqrt{3} ) { }^{2} + 2 \times \sqrt{3} \times a + a {}^{2} [/tex]

[tex] \sqrt{9} + 2 \sqrt{3} a + a {}^{2} [/tex]

[tex]3 + 2 \sqrt{3} a + a {}^{2} [/tex]

T) (2/3x+3/5y)^2

(2/3x)^2+2*2/3x*3/5y+(3/5y)^2

4/9x^2+12/15xy+9/25y

U)

[tex]( \sqrt{2} x + \frac{1}{ \sqrt{3} } )[/tex]

[tex]( \sqrt{2} x) {}^{2} + 2 \times \frac{ \sqrt{2} }{1} \times \frac{1}{ \sqrt{3} } + ( \frac{1}{ \sqrt{3} } ) {?}^{2} [/tex]

[tex]2x + \frac{ \sqrt{4} }{ \sqrt{3} } + \frac{1}{3} [/tex]

[tex]2x + \frac{2}{ \sqrt{3} } + \frac{1}{3} [/tex]

[tex]2x + \frac{2 \sqrt{3} }{3 } + \frac{1}{3} [/tex]

Sper că te-am ajutat!