Răspuns :
[tex]\it a)\ (a^u)'=a^u\cdot u'lna\\ \\ 5^{3x^2+2}=5^{3x^2+2}\cdot(3x^2+2)'ln5=6x\cdot5^{3x^2+2}ln5\\ \\ \\ b)\ (log_a u)'=\dfrac{1}{u\cdot lna}\cdot u'\\ \\ \\ log_3(6x^2-5x)=\dfrac{12x-5}{(6x^2-5x)ln3}[/tex]
[tex]\it a)\ (a^u)'=a^u\cdot u'lna\\ \\ 5^{3x^2+2}=5^{3x^2+2}\cdot(3x^2+2)'ln5=6x\cdot5^{3x^2+2}ln5\\ \\ \\ b)\ (log_a u)'=\dfrac{1}{u\cdot lna}\cdot u'\\ \\ \\ log_3(6x^2-5x)=\dfrac{12x-5}{(6x^2-5x)ln3}[/tex]