Răspuns :
Răspuns: Ai demonstrația mai jos
Explicație pas cu pas:
[tex]\bf n= 8\cdot 6^n + 10\cdot6^{n+1} -6^{n+2}[/tex]
[tex]\bf n= 6^n \cdot \bigg(8\cdot 6^{n-n} + 10\cdot6^{n+1-n} -6^{n+2-n}\bigg)[/tex]
[tex]\bf n= 6^n \cdot \Big(8\cdot 6^{0} + 10\cdot6^{1} -6^{2}\Big)[/tex]
[tex]\bf n= 6^n \cdot \Big(8\cdot 1 + 10\cdot6 -36\Big)[/tex]
[tex]\bf n= 6^n \cdot \Big(8 + 60 -36\Big)[/tex]
[tex]\bf n= 6^n \cdot 32[/tex]
[tex]\red{\boxed{~\bf n= 6^n \cdot 4\cdot 8\implies n~~\vdots~~8~}}[/tex]
[tex]==pav38==[/tex]
[tex]\it 8\cdot6^n+10\cdot6^{n+1}-6^{n+2}=6^n(8+60-36)=6^n\cdot32=6^n\cdot4\cdot8\in M_8[/tex]