Răspuns :
Explicație pas cu pas:
suma Gauss pentru numere impare:1 + 3 + 5 + 7 + … + ( 2n – 1 ) = n · n
2n - 1 =2017
2n = 2017+1
2n =2018
n = 1009
b= 1 + 3 + 5 +... + 2017 = n² = 1009²
(1+2+3+4+5+....+2016+2017)-(2+4+6+...+2016)
1+2+3+4+5+...+ 2016 +2017= 2017×2018:2=2.035.153
2+4+6+...+2016= 2×1+2×2+2×3+...+2×1008=
=2×(1+2+3+...+1008) =2×(1008×1009:2)
=1.017.072
2.035.153-1.017.072=1.036.081