Răspuns :

[tex]\bf 10 \cdot \{81^{2}:(3^{2})^{4} + 2\cdot[(2^{2}\cdot3)^{15}:(2^{29}\cdot3^{15})+1] \} =[/tex]

[tex]\bf 10 \cdot \{( 3^{4} )^{2}:(3^{2})^{4} + 2\cdot[(2^{2\cdot15} \cdot3^{15}):(2^{29}\cdot3^{15})+1] \} =

[/tex]

[tex]\bf 10 \cdot \{3^{4 \cdot2}:3^{2 \cdot4} + 2\cdot[(2^{30} \cdot3^{15}):(2^{29}\cdot3^{15})+1] \} =[/tex]

[tex]\bf 10 \cdot \{3^{8}:3^{8} + 2\cdot[(2^{30} \cdot3^{15}):(2^{29}\cdot3^{15})+1] \} =

[/tex]

[tex]\bf 10 \cdot [3^{8 - 8} + 2\cdot(2^{30 - 29} \cdot3^{15 - 15}+1]=[/tex]

[tex]\bf 10 \cdot [3^{0} + 2\cdot(2^{1} \cdot3^{0}+1)]=[/tex]

[tex]\bf 10 \cdot [1+ 2\cdot(2 \cdot1+1)]=[/tex]

[tex]\bf 10 \cdot (1+ 2\cdot3)=[/tex]

[tex]\bf 10 \cdot (1+ 6)=[/tex]

[tex]\bf 10 \cdot 7 =[/tex]

[tex]\pink{ \underline{ \: \bf 70 \: }}[/tex]