Determinați cel mai mic multiplu comun al următoarelor numere naturale: a 24; 36; b) 28; 42; c) 30; 45; d) 36; 54; 60; 48; ; ; f) 48; 72; g) 75; 60; h) 54; 90; 1972; 108; j) 80; 120; k) 54; 180; 1) 75; 200.​

Răspuns :

Răspuns:

24 = 2^3*3

36 = 2^2*3^2

cmmmc = 2^3*3^2 = 72

___________

b)

28 = 7*2^2

42 = 7*2*3

cmmmc = 7*3*2^2 = 84

___________

c)

30 = 2*3*5

45 = 3^2*5

cmmmc = 2*3^2*5 = 90

_______________

d)

36 = 2^2*3^2

54 = 2*3^3

cmmmc = 2^2*3^3 = 108

_________________

e)

60 = 2^2*3*5

48 = 2^4*3

cmmmc = 2^4*3*5 = 240

_________________

f)

48 = 2^4*3

72 = 2^3*3^2

cmmmc = 2^4*3^2 = 144

______________

g)

75 = 3*5^2

60 = 2^2*3*5

cmmmc = 2^2*3*5^2 = 300

______________

h)

54 = 2*3^3

90 = 2*3^2*5

cmmmc = 2*3^3*5 = 270

_______________

i)

72 = 2^3*3^2

108 = 2^2*3^3

cmmmc = 2^3*3^3 = 216

_________________

k)

54 = 2*3^3

180 = 2^2*3^2*5

cmmmc = 2^2*3^3*5 = 540

___________________

l)

75 = 3*5^2

200 = 2^3*5^2

cmmmc = 2^3*5^2*3 = 600