Răspuns :
[tex]\it a=(2^{15}+5^6-7^{15}):(2^{15}+5^6-7^{15})\cdot3^{26}=1\cdot3^{26}=3^{26}[/tex]
Răspuns:
Explicație pas cu pas:
[tex]\bf \Big[ \big(2^{3}\big)^5+25^3-7^{35}:7^{20} \Big]:\big( 2^{15}-7^{15}+5^{6}\big)\cdot 3^{26} =[/tex]
[tex]\bf \Big(2^{3\cdot 5}+5^{2\cdot3}-7^{35-20} \Big):\big( 2^{15}-7^{15}+5^{6}\big)\cdot 3^{26} =[/tex]
[tex]\bf \Big(2^{15}+5^{6}-7^{15} \Big):\big( 2^{15}-7^{15}+5^{6}\big)\cdot 3^{26} =[/tex]
[tex]\bf 1 \cdot 3^{26} = \red{\boxed{\bf ~ 3^{26}~}}[/tex]