Răspuns :

Explicație pas cu pas:

[tex] {( {15}^{4} \times {15}^{6} )}^{4} \div {( {27}^{3} })^{2} = \\ ({{15}^{4 + 6} })^{4} \div {27}^{3 \times 2} = \\ ({ {15}^{10} })^{4} \div {27}^{6} = \\ {15}^{10 \times 4} \div ({ {3}^{3} })^{6} = \\ {15}^{40} \div {3}^{3 \times 6} = \\ {(3 \times 5)}^{40} \div {3}^{18} = \\ {3}^{40} \times {5}^{40} \div {3}^{18} = \\ {3}^{40 - 18} \times {5}^{40} = \\ {3}^{22} \times {5}^{40} [/tex]

[tex]\it (15^4\cdot15^6)^4:(27^3)^2=(15^{4+6})^4:27^{3\cdot2}=(15^{10})^4:27^6=\\ \\ 15^{40}:(3^3)^6=\dfrac{5^{40}\cdot3^{40}}{3^{18}}=5^{40}\cdot3^{40-18}=5^{40}\cdot3^{22}[/tex]