Răspuns :
[tex]\it \left\begin{aligned} \it \widehat{DOA}=60^o\ (suplementul\ lui\ 120^o)\\ \\ \it OD=OA=AC:2=6:2=3cm\end{aligned}\right\} \Rightarrow \Delta AOD-echilateral\\ \\ \\ \mathcal{A}_{ABCD} =4\cdot\mathcal{A}_{AOD} =4\cdot\dfrac{\ell^2\sqrt3}{4}=3^2\sqrt3=9\sqrt3\ cm^2[/tex]
Răspuns:
ΔBOC echilateral; OC=OB; <BOC=180-1`20=60 ; A BOC=3²√3/4=9√3/4; A ABCD=4*9√3/4=9√3
Explicație pas cu pas: