Răspuns :

Răspuns:

n=2020² -1

Explicație pas cu pas:

amplificand cu conjugat , vom obtine numitorii 1

rama

√2-1+√3-√2+.....+√n-√(n-1)+√(n+1)-√n= ...dupared term aemenea

√(n+1)-1=2019

√(n+1)=2020

n+1=2020²

n=2020² -1=..vezi tu, pe calculator

[tex]\it \dfrac{1}{\sqrt{n+1}+\sqrt n}=\dfrac{\sqrt{n+1}-\sqrt n}{n+1-n}=\sqrt{n+1}-\sqrt n\\ \\ \\ Ecua\c{\it t}ia\ \ devine:\\ \\ \sqrt2-1+\sqrt3-\sqrt2+\ ...\ +\sqrt{n+1}-\sqrt n=2019 \Rightarrow -1+\sqrt{n+1}=2019|_{+1}\Rightarrow\\ \\ \sqrt{n+1}=2020 \Rightarrow (\sqrt{n+1})^2=2020^2 \Rightarrow n+1=2020^2 \Rightarrow n=2020^2-1 \Rightarrow \\ \\ \Rightarrow n=(2020-1)(2020+1) \Rightarrow n=2019\cdot2021[/tex]