Răspuns :
Explicație pas cu pas:
[tex]2 \sqrt{2} x - 2x = 3 \sqrt{2} - 3 \\ 2x \times ( \sqrt{2} - 1) = 3 \times ( \sqrt{2} - 1) \\ x = \frac{3 \times ( \sqrt{2} - 1) }{2 \times ( \sqrt{2} - 1)} \\ x = \frac{3}{2} [/tex]
[tex]2\sqrt{2}x+3=2x+3\sqrt{2} \\ 3\sqrt{2}=2\sqrt{2}x+3-2x \\ 2\sqrt{2}x-2x=3\sqrt{2}-3 \\ x(2\sqrt2-2)=3\sqrt2-3 \\ \Rightarrow \ x=\frac{3\sqrt{2}-3}{2\sqrt{2}-2} = \frac{3(\sqrt2-1)}{2(\sqrt2-1)} \\ \Rightarrow \boxed{x=\boxed{\frac{3}{2}}}[/tex]