Răspuns:
Explicație pas cu pas:
[tex]\sqrt{3^2} = 3\\ \sqrt{3^3} = 3\sqrt{3}\\ \sqrt{3^4} = 9\\ \sqrt{3^5}=9\sqrt{3} \\ .....\\ \sqrt{3^10}= 81*3=243[/tex]
a= [tex]\frac{\sqrt{3}+3+3\sqrt{3}+...+243 }{33+11\sqrt{3} } = \frac{\sqrt{3}+3+3\sqrt{3}+9+9\sqrt{3}+27+27\sqrt{3}+81+81\sqrt{3}+243 }{33+11\sqrt{3} } = \frac{363+121\sqrt{3} }{33+11\sqrt{3} } = \frac{11(33+11\sqrt{3}) }{33+11\sqrt{3} } =11[/tex]