Răspuns :

✏️FOLOSIM FORMULA LUI GAUSS

✅✅✅✅✅✅✅✅✅✅✅✅✅✅

[tex]1 + 2 + 3 + ... + n = \frac{n \times (n + 1)}{2} [/tex]

✅✅✅✅✅✅✅✅✅✅✅✅✅✅

[tex]1 + 2 + ... + 99 = \\ \frac{99 \times (99 + 1)}{2} = \\ = \frac{99 \times 100}{2} = \\ = \frac{990}{2} = \\ = 495[/tex]

[tex]1 + 2 + ... + 600 = \\ = \frac{600 \times (600 + 1)}{2} \\ = \frac{600 \times 601}{2} = \\ = \frac{360600}{2} = \\ = 180300[/tex]

[tex]1 + 2 + ... + 1000 = \\ = \frac{1000 \times (1000 + 1)}{2} = \\ = \frac{1000 \times 1001}{2} = \\ = \frac{1001000}{2} = \\ = 500500[/tex]

Salutare!

Vom folosi metoda lui Gauss:

  • n×(n+1)÷2

1+2+...+99=?

99×(99+1):2=99×100=9900:2=4950

1+2+...+600=?

600×(600+1):2=600×601:2=360600:2=180300

Observație:Îl înlocuiești mereu pe "n"cu ultimul număr.

Ex:

1+2+...+10=10×(10+1):2=10x11:2=110:2=55