Pt seriile consecutive de numere 1+2+3+... se foloseste suma lui Gauss , S = [(a1+an)*n]/2
a) S1 = 1+2+3+...+45 = (1+45)*45/2 = (46*45)/2 = 23*45 = 1035
S2 = 1+2+.....+69 = (1+69)*69/2 = (70*69)/2 = 35*69 = 2415
(1035, 2415)
b) S1 = 1+2+3+...+105 = (1+105)*105/2 = 106*105/2 = 53*105 = 5565
S2 = 1+2+3+...+125 = (1+125)*125/2 = 126*125/2 = 63*125 = 7875
(5565, 7875)