Răspuns :
Răspuns:
Explicație pas cu pas:
sin x = 2/3 ; x ∈ (0° ; 90°)
----------------------------------
sin²x = (2/3)² = 4/9
cos²x = 1-sin²x = ⁹⁾1-4/9 = 5/9 =>
cos x = √(5/9) = √5 /3
-------------------------------------
tg x = sin x / cos x = 2/3 : √5/3 = 2/3 · 3/√5 = 2/√5 = 2√5/5
ctg x = cos x / sin x = √5/3 : 2/3 = √5/3 ·3/2 = √5/2
[tex]\it x\in(0,\ 90^o),\ sinx=\dfrac{2}{3}\\ \\ \\ cosx=\sqrt{1-sin^2}=\sqrt{1-\Big(\dfrac{2}{3}\Big)^2}=\sqrt{1-\dfrac{4}{9}}=\sqrt{\dfrac{5}{9}}=\dfrac{\sqrt5}{3}[/tex]
[tex]\it tgx=\dfrac{sinx}{cosx}=\dfrac{\dfrac{2}{3}}{\dfrac{\sqrt5}{3}}=\dfrac{2}{\not3}\cdot\dfrac{\not3}{\sqrt5}=\dfrac{^{\sqrt5)}2}{\ \ \sqrt5}=\dfrac{2\sqrt5}{5}\\ \\ \\ tgx=\dfrac{2}{\sqrt5},\ \ ctgx=\dfrac{1}{tgx}=\dfrac{\sqrt5}{2}[/tex]