Răspuns :

Este o formula in care [tex]a^{log_{a}^{b} } =b[/tex]

a) 2㏒₂ˣ = x

3㏒₃ˣ =x

x+x <5

2x < 5

x < 5/2

x apartine (0,5/2)

b) x㏒₂ˣ < 32

log₂ (x)² < 5 ridic totul la a 2

| log₂(x) | <V5 si exista doua solutii

log₂(x) < V5 , log₂(x) >/  0

log₂(x) < V5, log₂(x) < 0

x < 2 la puterea V5, log₂(x) >/ 0

-log₂(x) < V5, log₂(x) < 0

x apartine [1, 2 la puterea V5)

x apartine 1/2 la puterea V5, 1)

in concluzie x apartine (1/ 2 la puterea V5, 2 la puterea V5)