Răspuns:
Explicație pas cu pas:
a= [tex]=(\frac{2}{3})^{n} : \frac{2^{n+1}+(2*3)^{n+1}}{3^{n+1} +(3*3)^{n+1}} =(\frac{2}{3})^{n} :\frac{2^{n+1}(1+3^{n+1})}{3^{n+1}(1 +3^{n+1}} = ( \frac{2}{3})^{n} : (\frac{2}{3})^{n+1} = (\frac{2}{3})^{-1} =\frac{3}{2}[/tex]
[tex](\frac{2a}{3})^{100} = (\frac{2*\frac{3}{2} }{3})^{100} = 1^{100}=1[/tex]