Răspuns:
Explicație pas cu pas:
f:[2, + ∞) ->R f(x) = x√x-2
[tex]\int\limits^3_2 {f(x)\sqrt{x-2} } \, dx= \int\limits^3_2 {x(x-2)}dx = \int\limits^3_2 {x^{2}dx-2\int\limits^3_2 {x } dx = \frac{x^{3}}{3} | _{2}^{3}-x^{2}|_2^{3} = \frac{3^3}{3} -\frac{2^3}{3}-3^{2}+2^{2}=[/tex]
=9-[tex]\frac{8}{3} -9+4= - \frac{8}{3} +4 = \frac{12-8}{3}=\frac{4}{3}[/tex]