Fie functia f:[1,2]->R,
[tex]f(x) = \frac{1}{x \sqrt{x^{2} + 1 } } [/tex]
Sa se arate ca functia F(x):[1,2]->R,
F(x)=
[tex]ln \frac{ \sqrt{x ^{2} + 1} - 1}{x} [/tex]
este o primitiva a functiei f.
Sa fie bine explicat, caci nu am inteles raspunsul de la finalul cartii.​

Răspuns :

Pentru ca F(x) sa fie primitiva lui f(x), F'(x)=f(x)

[tex]F'(x)=\frac{x}{\sqrt{x^2+1}-1}*(\frac{\sqrt{x^2+1}-1}{x} )' \\\\F'(x)=\frac{x}{\sqrt{x^2+1}-1}*(\frac{(\sqrt{x^2+1}-1)'*x-x'*(\sqrt{x^2+1}-1)}{x^2} )\\\\\\F'(x)=\frac{\frac{x^2}{\sqrt{x^2+1}}-\sqrt{x^2+1}+1 }{x(\sqrt{x^2+1}-1)} \\\\\\F'(x)=\frac{\frac{x^2-x^2-1+\sqrt{x^2+1}}{\sqrt{x^2+1}} }{x(\sqrt{x^2+1}-1)}\\\\\\F'(X)=\frac{\sqrt{x^2+1}-1}{x(\sqrt{x^2+1}-1)\sqrt{x^2+1}} =\frac{1}{x\sqrt{x^2+1}}=f(x)[/tex]