Răspuns :

Răspuns:

[tex]\neq \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \pi \alpha x_{123} x_{123} \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \\[/tex]

Explicație:

\neq  \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \pi \alpha x_{123} x_{123} \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \\\neq  \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \pi \alpha x_{123} x_{123} \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \\\neq  \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \pi \alpha x_{123} x_{123} \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \\\neq  \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \pi \alpha x_{123} x_{123} \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \\

fds ieste iegal cu patratu lu mihai ieminescian banana mia