Răspuns:
a)
[tex] \frac{2 \frac{1}{3} }{0.5} = \frac{3x}{9} = \frac{ \frac{ \frac{7}{3} }{1} }{2} = \frac{x}{3} = \frac{14}{3} = \frac{x}{3} = > x = 14[/tex]
b)
[tex] \frac{14.3}{x - 2} = \frac{10}{2.5} = > \frac{ \frac{143}{10} }{x - 2} = 4 = > \frac{143}{10(x - 2)} = 4 = > 143 = 40(x - 2) = > 143 = 40x - 80 = > - 40x = - 80 - 143 = > - 40x - 223 = > x = \frac{223}{40} [/tex]
c)
[tex] \frac{x + 1}{18 \frac{4}{5} } = \frac{1 \frac{3}{10} }{7.2} = > \frac{x + 1}{ \frac{94}{5} } = \frac{ \frac{13}{10} }{ \frac{36}{5} } = > \frac{(x + 1) \times 5}{94} = \frac{13}{72} = > \frac{5x + 5}{94} = \frac{13}{72} = > 72(5x + 5) = 1222 = > 360x + 360 = 1222 = > 360x = 1222 - 360 = > 360x = 862 = > x = \frac{431}{180} [/tex]
d)
[tex] \frac{14}{25 \frac{1}{5} } = \frac{15}{2x - 1} = > \frac{14}{ \frac{126}{5} } = \frac{15}{2x - 1} = > \frac{5}{9} = \frac{15}{2x - 1} = > 5(2x - 1) = 135 = > 2x - 1 = 27 = > 2x = 27 + 1 = > 2x = 28 = > x = 14[/tex]