Răspuns :
Răspuns:
[tex]\mathbf{ \frac{ \sqrt{2} }{4} }[/tex]
Explicație pas cu pas:
[tex]$\mathbf{8 {}^{ - \frac{1}{2} } = \frac{1}{8 {}^{ \frac{1}{2} } }; a {}^{ - n } = \frac{1}{a {}^{n} } }$[/tex]
[tex]$\mathbf{ = \frac{1}{ \sqrt{8} } \: am \: transformat \: folosind \: a {}^{ \frac{m}{n} } = \sqrt[n]{ {a}^{m} } }$[/tex]
[tex]$\mathbf{ = \frac{1}{2 \sqrt{2} } = \frac{1}{2 \sqrt{2} } \times \frac{ \sqrt{2} }{ \sqrt{2} } = \frac{1 \sqrt{2} }{2 \sqrt{2} \sqrt{2} } }$[/tex]
[tex]$\mathbf{ \frac{ \sqrt{2} }{2 \times 2} =\boxed{\mathbf{ \frac{ \sqrt{2} }{4} }}}$[/tex]
Bafta ! :)
[tex]\it 8^{-\frac{1}{2}}=\dfrac{1}{8^{\frac{1}{2}}}=\dfrac{^{\sqrt8)}1}{\sqrt8}=\dfrac{\sqrt8}{8}=\dfrac{\sqrt{4\cdot2}}{8}=\dfrac{\ 2\sqrt2^{(2}}{8}=\dfrac{\sqrt2}{4}[/tex]