Răspuns :
[tex]( \sqrt{15} ) {}^{2} + \sqrt{2} \times ( \sqrt{2} - \sqrt{3} ) + ( \sqrt{18} - \sqrt{3} ) \div \sqrt{3} = \\ 15 + \sqrt{2} \times ( \sqrt{2} - \sqrt{3} ) + ( \sqrt{18} - \sqrt{3} ) \div \sqrt{3} = \\ 15 + 2 - \sqrt{6} + ( \sqrt{18} - \sqrt{3} ) \div \sqrt{3} = \\ 15 + 2 - \sqrt{6} + (3 \sqrt{2} - \sqrt{3} ) \div \sqrt{3} = \\ 17 - \sqrt{6} + (3 \sqrt{2} - \sqrt{3} ) \div \sqrt{3} = \\ 17 - \sqrt{6} + \frac{3 \sqrt{2} - \sqrt{3} }{ \sqrt{3} } = \\ 17 - \sqrt{6} + \frac{(3 \sqrt{2} - \sqrt{3} ) \times \sqrt{3} }{3} = \\ 17 - \sqrt{6} + \frac{3 \sqrt{6} - 3 }{3} = \\ 17 - \sqrt{6} + \frac{3 \times ( \sqrt{6} - 1)}{3} = \\ 17 - \sqrt{6} + \sqrt{6} - 1 = \\ 17 - 1 = \\ 16[/tex]
Sper că te-am ajutat!