Răspuns :
Răspuns:
x = {-2 ; 3}
Explicație pas cu pas:
log₂(x²-x-2) = 2
Conditii : x²-x-2 > 0
x²-x-2 = 0 => x₁,₂ = [1±√(1+8)]/2
x₁,₂ = (1±3)/2 => x₁ = -1 ; x₂ = 2
x I -∞ -1 2 +∞
x²-x-2 I+++++++++0------0+++++++
x ∈ (-∞ , -1)∪(2 , +∞) din conditie
log₂(x²-x-2) = 2 <=> log₂(x²-x-2) = log₂(2²) =>
x²-x-2 = 4 => x²-x-6 = 0 => x₁,₂ = [1±√(1+24)]/2
x₁,₂ = (1±5)/2 => x₁ = -2 ∈ I ; x₂ = 3 ∈ I
Răspuns:
x1 = -2 ; x2 = 3
Explicație pas cu pas:
❁❁Salutare !❁❁
log2(x²-x-2) = 2
x € (- infinit , -1) U (2 , + infinit)
x² - x - 2 = 2²
x² - x - 2 = 4
x² - x - 2 - 4 = 0
x² + 2x - 3x - 6 = 0
x × (x + 2) - 3 × (x + 2) = 0
(x + 2) × (x - 3) = 0
x + 2 = 0 => x1 = - 2
x - 3 = 0 => x2 = 3
x = {-2 ; 3}
<<darius>>