Explicație pas cu pas:
[tex] {3}^{3} + {3}^{10} \div {3}^{8} \times 3 + 3 \times {3}^{7} \div {3}^{5} + 2 \times {3}^{10} \div (5 \times {3}^{5} + {3}^{5} ) + 9 \times {3}^{3} = \\ {3}^{3} + {3}^{10 - 8 + 1} + {3}^{1 + 7 - 5} + 2 \times {3}^{10} \div {3}^{5} \div 6 + {3}^{5} = \\ {3}^{3} + {3}^{3} + {3}^{3} + {3}^{4} + {3}^{5} = \\ {3}^{3} \times (1 + 1 + 1 + 3 + 9) = \\ {3}^{3} \times 15 = 5 \times {3}^{4} = 405[/tex]