Răspuns:
Explicație pas cu pas:
[tex] log_{3}(2x - 5) = \frac{ ln(2 x - 5 ) }{ ln(3) } [/tex]
[tex]2 {}^{3} x \sqrt{125} + 4x \sqrt{8} - 2 {}^{3} x \sqrt{64} = 2 {}^{3} x \sqrt{125} + 8x \times 2 {}^{ \frac{1}{2} } - 16x {}^{3} = x(8 \times 5 \sqrt{5} + 8 \sqrt{2} - 16x {}^{2} ) = x \times 8(5 \sqrt{5} + \sqrt{2} - 2x {}^{2} ) = 8x(5 \sqrt{5} + \sqrt{2} - 2x {}^{2} )[/tex]