Răspuns :

Răspuns:

Explicație pas cu pas:

a) 2(x+√2)-√50<√2(2x-3)-4 <=>

2x + 2√2 - √(25·2) < 2√2 ·x -3√2 - 4 =>

√(25·2) = √(5²·2) = 5√2 =>

2x + 2√2 - 5√2 < 2√2 ·x -3√2 - 4  =>

2x-3√2 < 2√2 ·x -3√2-4  =>

2x-2√2 ·x < -4   <=>

2x·(1-√2) < -4    => x < -2/(1-√2)

Amplificam cu 1+√2  =>

x < (-2-2√2)/(1-2) =>

x < (2+2√2) => x ∈(-∞ ; 2+2√2)

b) 2(2-√2) ≤ 2√2(x-7)   I:2 =>

2-√2 ≤ √2(x-7) =>

2-√2 ≤ √2 ·x -7√2  =>

2-√2+7√2 ≤ √2 ·x =>

2-6√2 ≤ √2 ·x =>

√2 ·x ≥ 2-6√2   I : √2  =>

x ≥ (2/√2) - 6  =>

x ≥ (2√2)/2 - 6 =>

x ≥ √2 - 6  => x ∈ (√2-6 ; +∞)