Răspuns :
Răspuns:
[tex](3x + 1) {}^{2} - (x + 3) {}^{2} \\ = > (3x {}^{2} ) + 2 \times 3x \times 1 + {1}^{2} \\ = > 9x {}^{2} + 5x + 1 \\ x {}^{2} - 2 \times 3 \times x + 3 {}^{2} \\ = > \times {}^{2} - 6x + 9 \\ = > 9x {}^{2} + 5x + 1 - x {}^{2} - 6x + 9 = 8x {}^{2} - x + 10[/tex]
[tex](3x \times 5) {}^{2} - (x - 1) {}^{2} \\ = (3x) {}^{2} + 2 \times 5 \times 3x + 5 {}^{2} \\ = > 9x {}^{2} + 30x + 25 \\ (x) {}^{2} + 2 \times 1 \times x + 1 {}^{2} \\ = x {}^{2} + 2x + 1 \\ = > 9x {}^{2} + 30x + 1 - x {}^{2} + 2x + 1 \\ = 8x {}^{2} + 32x[/tex]
[tex](x + \sqrt{2} ) {}^{2} - 8 \\ = x {}^{2} + 2 \times (\sqrt{2 ){}^{2} } \times x - 8 \\ = x {}^{2} + 4x - 8[/tex]
[tex](2x + \sqrt{3} ) {}^{2} - 27 \\ = 2x {}^{2} + 2 \times ( \sqrt{3} ) {}^{2} \times 2x - 27 \\ = 2x {}^{2} + 12x - 27[/tex]
[tex]( \sqrt{2x} - 1) {}^{2} - 32x {}^{2} \\ = ( \sqrt{2x} ) {}^{2} - 2 \times 1 \times \sqrt{2x} - 32x {}^{2} \\ = > 2x - 2 \sqrt{2x} - 32x {}^{2} [/tex]