Răspuns :

Răspuns:

Explicație pas cu pas:

a) 2¹⁺²⁺³⁺........⁺¹⁶ = 4ⁿ⁺⁷

Aducem egalitatea la aceeasi baza:

<=> 2¹⁺²⁺³⁺........⁺¹⁶ = (2²)ⁿ⁺⁷ <=>

2¹⁺²⁺³⁺............¹⁶ = 2²⁽ⁿ⁺⁷⁾  =>

1+2+3+.......+16 = 2n+14 , Folosim formula lui Gauss =>

(1+16)·16:2 = 2n + 14 <=> 17·8 -14 = 2n =>

2n = 136-14 <=> 2n = 122 => n = 122:2 => n = 61

b) 2⁵⁺¹²⁺¹⁹............⁺⁷⁵ = 16¹¹ⁿ <=>

2⁵⁺¹²⁺¹⁹............⁺⁷⁵ = (2⁴)¹¹ⁿ <=>

2⁵⁺¹²⁺¹⁹............⁺⁷⁵ = 2⁴⁴ⁿ =>

5+12+19..........+75 = 44n =>

(5+75)·[(75-5):7+1]:2 = 44n =>

80·11:2 = 44n <=> 40·11 = 44n  I : 11  =>

40 = 4n => n = 40:4  => n = 10

c) 15ⁿ⁺⁸ : 5ⁿ⁺⁸  = 81⁶  <=>

(15:5)ⁿ⁺⁸ = (3⁴)⁶  <=> 3ⁿ⁺⁸ = 3⁴ˣ⁶  =>

n+8 = 24  => n = 24-8 => n = 16

d) 4²⁺⁴⁺⁶⁺..............⁺²⁰ = 4ⁿ⁽ⁿ⁺¹⁾  =>

2+4+6+..........+20 = n(n+1) <=>

2(1+2+3+........+10) = n(n+1) =>

2·11·10:2 = n(n+1) <=>

110 = n(n+1)  , produs de doua numere consecutive =>

n = 10 ; n+1 = 11 => n = 10

Răspuns:

Explicație pas cu pas:

a) 2^(1+2+3+....+16)=2^2(n+7)

16x17/2=2(n+7)     272=4n+28    244=4n   ⇒n=61

c) 3^(n+8)×5^(n+8):5^(n+8)=3^4x6    

n+8=24  ⇒    n=16

d)

4^(2+4+.....+20)=4^n(n+1)

2·10·11/2=n(n+1)        110=n²+n       n²+n-110=0

n1,2=-1±√1+440/2=-1±21/2       n∈N   ⇒n=20/2=10