Răspuns :

Hey! :)

Am atasat rezolvarea. Succes!

Vezi imaginea AlishaMasha

[tex]b = \sqrt{ {2}^{50} + {2}^{50}}\cdot \dfrac{ \sqrt{8} }{ {512}^{3}} [/tex]

[tex]b= \sqrt{ 2\cdot{2}^{50}}\cdot \dfrac{ \sqrt{ {2}^{3} } }{ {512}^{3}} [/tex]

[tex]b= \sqrt{{2}^{50 + 1}}\cdot \dfrac{ \sqrt{ {2}^{3} } }{ {512}^{3}} [/tex]

[tex]b= \sqrt{{2}^{51}}\cdot \dfrac{ \sqrt{ {2}^{3} } }{ {512}^{3}} [/tex]

[tex]b=\dfrac{ \sqrt{ {2}^{3} \cdot{2}^{51}} }{ {512}^{3}} [/tex]

[tex]b = \dfrac{ \sqrt{{2}^{51 + 3}}}{ {512}^{3} } [/tex]

[tex]b = \dfrac{ \sqrt{ {2}^{54} } }{ {512}^{3} } [/tex]

[tex]b = \dfrac{\sqrt{ {( {2}^{27} })^{2} }}{ {2}^{9 \cdot3}}[/tex]

[tex]b = \dfrac{ {2}^{27} }{ {2}^{27} } [/tex]

[tex] \boxed{b = 1}[/tex]