Răspuns :

Răspuns:

Explicație pas cu pas:

6)

a) 1 + 7 + 13 + ...+ x = 96

a1 = 1

an = x

r = 6

an = a1 + (n - 1)*r

x = 1 + (n - 1)*6 = 1 + 6n - 6 = 6n - 5

n = (x + 5)/6

Sn = n*(a1 + an)/2

96 = (x + 5)/6 * (1 + x)/2 = (x + 5)(x + 1)/12

(x + 5)(x + 1) = 96*12 = 1152

x^2 + x + 5x + 5 = 1152

x^2 + 6x + 5 - 1152 = 0

x^2 + 6x - 1147 = 0

Δ = 36 + 4588 = 4624 = 68^2

x = (-6 + 68)/2 = 62/2 = 31

_________________

b)

-5 - 3 - 1 + 1 + 3 + 5 + 7 + 9 + ....+ x = 72

7 + 9 + ...+ x = 72

a1 = 7

an = x

r = 2

an = a1 + (n - 1)*r

x = 7 + (n - 1)*2 = 7 + 2n - 2 = 2n + 5

n = (x - 5)/2

Sn = n*(a1 + an)/2

72 = (x - 5)/2 * (7+ x)/2 = (x - 5)(x + 7)/4

(x - 5)(x + 7) = 72*4 = 288

x^2 + 7x - 5x - 35 = 288

x^2 + 2x - 35 - 288 = 0

x^2 + 2x - 323 = 0

Δ = 4 + 1292 = 1296 = 36^2

x = (-2 + 36)/2 = 34/2 = 17

_____________________