Răspuns :
Răspuns:
Explicație pas cu pas:
S = 1 + 2 + 2^2 + 2^3 + ...+2^2018
2S = 2 + 2^2 + 2^3 + 2^4 + ...+2^2019
2S - S = S = 2 + 2^2 + 2^3 + 2^4 + ...+2^2019 - 1 - 2 - 2^2 - 2^3 - ...- 2^2018
S = 2^2019 - 1
n = 1 + 2^2019 - 1 = 2^2019
1+1=2
2+2=4=2^{2}
2^{2}+2^{2}=4+4=8=2^{3}
:
:
:
2^{2018}+2^{2018}=2^{2019}
=> n=2^{2019}
2+2=4=2^{2}
2^{2}+2^{2}=4+4=8=2^{3}
:
:
:
2^{2018}+2^{2018}=2^{2019}
=> n=2^{2019}