Fie ABCD un trapez isoscel circumscriptibil cu AB || CD, AB > CD. Notăm cu x distanţa de la A la BC şi y distanţa de la C la AD. Atunci:
a.[tex]\frac{y}{x}=\frac{b}{B}[/tex]

b. [tex]x=\frac{2B\sqrt{Bb} }{B+b}; y=\frac{2b\sqrt{Bb} }{B+b}[/tex]

unde B si b sunt baza mare si respectiv baza mica ale trapezului

Răspuns :

Răspuns:

Explicație pas cu pas:

ABCD trapez isoscel circumscriptibil, AB=B, CD=b.

a) x=AE=BH, unde BH⊥AD, y=CF, CF⊥AD. deci BH║CF, ⇒ ΔDCF~ΔABH, ⇒ CF/BH=DC/AB, ⇒ y/x=b/B.

b) Ttrasăm DN⊥AB, AM=AG=B/2, DM1=DG=b/2, unde M și M1 puncte de tangență. Atunci AD=(B+b)/2. DM1=MN=b/2, deci AN=(B-b)/2. Din ΔADN, ⇒

[tex]DN^2=AD^2-AN^2=(\dfrac{B+b}{2})^2- (\dfrac{B-b}{2})^2=(\dfrac{B+b}{2}+ \dfrac{B-b}{2})(\dfrac{B+b}{2}-\dfrac{B-b}{2})=Bb, ~~deci~DN=\sqrt{Bb}.\\[/tex]

ΔABH~ΔADN, dreptunghice cu unghi ascuțit comun. ⇒

[tex]\dfrac{AB}{AD}=\dfrac{BH}{DN} ~=>~\dfrac{B}{\frac{B+b}{2} }=\dfrac{x}{ \sqrt{Bb}},~=>~x=\dfrac{B\sqrt{Bb} }{\frac{B+b}{2} },~=>~x=\dfrac{2B\sqrt{Bb} }{B+b}\\ Din~\dfrac{y}{x}=\dfrac{b}{B},~=>~y=\dfrac{xb}{B}=\dfrac{\frac{2B\sqrt{Bb} }{B+b}b}{B}=\dfrac{2b\sqrt{Bb} }{B+b} \\[/tex]

Vezi imaginea Boiustef