(Photomath)
Mai multe explicații:
*
[tex] \sqrt{37 - 20 \sqrt{3} } = \\ \sqrt{25 - 20 \sqrt{3} + 12} = \\ \sqrt{( {5}^{2} -\: 2 \times 2 \sqrt{3} \times 5 + ({2 \sqrt{3}) }^{2}) } = \\ \sqrt{ {(5 - 2 \sqrt{3}) }^{2} } [/tex]
...
[tex] \sqrt{4 + 2 \sqrt{3} } = \\ \sqrt{1 + 2 \sqrt{3} + 3} = \\ \sqrt{ {(1}^{2} +2 \times 1 \times \sqrt{3} + { \sqrt{3} }^{2}) } = \\ \sqrt{ {(1 + \sqrt{3}) }^{2} } [/tex]