Răspuns:
a)
(x-b/a) ^2=
(x-b)^2/a^2=
x^2-2xb+b^2/a^2
b)
((x/y)-3)^2=
(x/y)^2-6x/y+3^2=
x^2/y^2- 6x/y+9=
x^2/y^2- 6xy/y^2+9y^2/y^2=
(x^2-6xy+9y^2)/y^2=
(x-3y)^2/y^2
c)
(x-1)/(x+1) + 1/(x-1)=
(x-1)(x-1)/(x-1)(x+1)+ 1(x+1)/(x-1)(x+1)=
[(x-1)^2+(x+1)]/x^2-1
d)
2/(2a+3) - 1/(3-2a)=
2(3-2a)/(2a+3)(3-2a)-1(2a+3)/(3-2a)(2a+3)
=
(6-4a-2a-3)/(2a+3)(3-2a)=
(6-6a-3)/(6a-4a^2+9-6a)=
(3-6a)/(9-4a^2)
Explicație pas cu pas: