Răspuns :

8.

a)

ΔABC dreptunghic in A

∡B=30°

Teorema unghiului de 30° (latura care se opune unghiului de 30° este egala cu jumatate din ipotenuza

AC=BC:2

BC=2AC

BC=12 cm

Aplicam Pitagora (suma catetelor la patrat este egala cu ipotenuza la patrat)

BC²=AB²+AC²

144=AB²+36

AB²=108

AB=6√3 cm

∡C=180-30-90=60°

b)

∡F=45°

∡D=90°

∡E=180-90-45=45°

ΔFDE dreptunghic isoscel

FD=DE=7 cm

Pitagora:

FE²=FD²+DE²

FE²=49+49=98

FE=7√2 cm

c)

ΔLKM dreptunghic in K

KM=4 cm

LM=8 cm

LM=2KM⇒ ∡L=30°∡M=60°

Aplicam Pitagora:

LM²=KM²+LK²

64=16+LK²

LK²=48

LK=4√3 cm

d)

ΔJGH dreptunghic in G

GH=3 cm

∡H=60° ⇒ ∡J=30°

HG=JG=H:2

JH=6 cm

Aplicam Pitagora:

JH²=JG²+GH²

36=9+JG²

JG²=27

JG=3√3 cm

e)

ΔRTS isoscel

RT=RS

TS=12 cm

∡S=∡T=30° ⇒ ∡R=180-30-30=120°

Ducem inaltimea RP⊥TS

RP=TR:2

TR=2RP

TP=6 cm

Aplicam Pitagora:

TR²=TP²+PR²

4RP²=36+RP²

3RP²=36

RP²=12

RP=2√3 cm⇒ TR=4√3 cm=RS

f)

ΔONP isoscel

NO=OP=4 cm

NP=4√3 cm

∡N=∡P

Ducem inaltimea OS⊥NP

SP=2√3 cm

Aplicam Pitagora:

OP²=OS²+SP²

16=OS²+12

OS²=4

OS=2 cm

OP=2OS⇒∡P=30°=∡N

Un alt exercitiu de geometrie gasesti aici: https://brainly.ro/tema/3859150

#SPJ5