Răspuns :

Răspuns:

Explicație pas cu pas:

I)  

1) 10ˣ = 100  <=> 10ˣ = 10²  => x = 2

3) 64ˣ = 32  <=> (2⁶)ˣ = 2⁵  <=> 2⁶ˣ = 2⁵  => 6x = 5  => x = 5/6

4) 3ˣ = ⁴√27  <=> 3ˣ = 27¹⁾⁴  <=> 3ˣ = (3³)¹⁾⁴  <=> 3ˣ = 3³⁾⁴  => x = 3/4

8)√5ˣ = ∛625  <=> 5ˣ⁾² = ∛(5³)  <=> 5ˣ⁾² = 5  => x/2 = 5  => x = 10

II)

1) 16ˣ = 64  <=> (2⁴)ˣ = 2⁶  <=> 2⁴ˣ = 2⁶  => 4x = 6  => x = 6/4 => x = 3/2

2) 32ˣ = 8 <=> (2⁵)ˣ = 2³  <=> 2⁵ˣ = 2³ => 5x = 3 => x = 3/5

5) 16⁻ˣ -64 = 0 <=> 16⁻ˣ = 64 <=> (2⁴)⁻ˣ = 2⁶  <=> 2⁻⁴ˣ = 2⁶ =>

-4x = 6 => x = -6/4 => x = -3/2

7) 3⁹ˣ - 9²⁰⁰⁷ = 0  <=> 3⁹ˣ = (3²)²⁰⁰⁷  <=> 3⁹ˣ = 3⁴⁰¹⁴  => 9x = 4014 =>

x = 4014/9 => x = 446

III)

1) 3⁻²ˣ⁻¹  = 3ˣ²  <=> -2x-1 = x²  <=> x²+2x+1 = 0  <=> (x+1)² = 0 => x₁=x₂ = -1

3) 16ˣ = 32ˣ  <=> (2⁴)ˣ = (2⁵)ˣ  => 4x = 5x <=> 5x-4x = 0 => x = 0

4) 10ˣ⁺² = 1000³ˣ  <=> 10ˣ⁺² = (10³)³ˣ  <=> 10ˣ⁺² = 10⁹ˣ  => x+2 = 9x =>

8x = 2 => x = 2/8 => x = 1/4

5) (3/11)³ˣ⁻¹⁰  = (11/3)⁷ˣ⁻¹⁰  <=> (3/11)³ˣ⁻¹⁰ = (3/11)¹⁰⁻⁷ˣ  =>

3x-10 = 10-7x <=> 3x +7x = 10+10 => 10x = 20 => x = 2

IV)

2) 5ˣ+5ˣ⁺¹ = 3750  <=> 5ˣ+5·5ˣ = 3750 <=> 5ˣ·(1+5) = 3750<=>

6·5ˣ = 3750  I:6  => 5ˣ = 625 <=> 5ˣ = 5⁴  => x =4

3) 2ˣ⁺³ + 2ˣ⁺² + 2ˣ⁺¹ + 2ˣ = 30 <=>

2³·2ˣ+2²·2ˣ+2·2ˣ+2ˣ = 30 n<=> 2ˣ·(8+4+2+1) = 30 <=>

2ˣ·15 = 30 <=> 2ˣ = 30:15 => 2ˣ = 2 => x = 1

7) 2²ˣ - 2·2ˣ - 8 = 0  ; Notam 2ˣ = t => t²-2t-8 = 0 =>

t₁,₂ = [2±√(4+32)]/2  = (2±6)/2  => t₁ = -2  ; t₂ = 4

t₁ = -2  => 2ˣ = -2  , ecuatia nu are solutii deoarece 2ˣ>0

t₂ = 4 => 2ˣ = 4  <=> 2ˣ = 2²  => x = 2

13) 2·25ˣ = 10ˣ + 4ˣ  <=> 2·5²ˣ = (2·5)ˣ + 2²ˣ    I : 5²ˣ =>

2 = 2ˣ / 5ˣ  + 2²ˣ/5²ˣ  <=> (2/5)²ˣ + (2/5)ˣ -2 = 0 ;

notam (2/5)ˣ = t => t² + t -2 = 0 => t₁,₂ = [-1±√(1+8)]/2 =>

t₁,₂ = (-1±3)/2  => t₁ = -2  ; t₂ = 1

pentru t₁ nu exista solutii

t₂ = 1  => (2/5)ˣ = 1  <=> (2/5)ˣ = (2/5)⁰  => x = 0