Răspuns:
Explicație pas cu pas:
Ex1
a) sinx (la fel si cosx)
b) cosx
c) sinx
d) sinx sau cosx
Ex2
π radiani = 180°, deci π/4=45°, 7π/6=7*180°/6=7*30°=210°; π/6=30°; 3π/4=3·45°=135°.
Ex3
a) sin30°+sin45°·cos45°-cos60°=(1/2)+(√2/2)·(√2/2)-(1/2)=(√2)²/2²=2/4=1/2.
b) cos10°+cos20°+cos160°+cos170°=cos10°+cos20°+cos(180°-20°)+cos(180°-10°)=cos10°+cos20°+(-cos20°)+(-cos10°)=0.
c) sin130²=sin(180°-50°)=sin50°, deci sin²130°+cos²50°=sin²50°+cos²50°=1.
d) cosx=4/5. Din sin²x+cos²x=1, ⇒sin²x=1-cos²x=1-(4/5)²=1-16/25=9/25.
Deoarece in cadr I , sinx>0, ⇒sinx=√(9/25)=3/5.
Ex4. În triunghiul dreptunghic ABC cu m(∡A)=90° se dau: AB = 6,AC = 8.
a) BC²=AB²+AC²=6²+8²=36+64=100=10², deci BC=10.
b) sinB+cosB=AC/BC + AB/BC = 8/10 + 6/10= 14/10 =1,4.
c) Aria(ABC)=(1/2)·AB·AC=(1/2)·6·8=3·8=24
d) P(ABC)=AB+BC+AC=6+10+8=24.