Răspuns:
x+2≠0 x≠ -2
D=R\{-2}
Asimptota verticala
x→ -2 x< -2 lim[tex]\frac{x-1}{x+2} =\frac{-2-1}{-2-0+2} =\frac{-3}{-0} =+[/tex]∞
x= -2 asimptota la stana la +∞
Asimptota la dreapta
x→ -2 x>-2 lim[tex]\frac{x-1}{x+2} =[/tex](-2-1)/(-2+0+2)=-3/(+0)= -∞
x= -2 asimptota la dreapta la -∞
Asimptota o rizontala
x→+∞lim[tex]\frac{x-1}{x+2} =[/tex]1
x→ -∞ lim[tex]\frac{x-1}{x+2}[/tex]=1
Y=1 asimptota pe x∈(-∞,+∞)
Explicație pas cu pas: