Răspuns :

Răspuns:

a) Conditie x+2≥0   x≥ -2

Ridici ecuatia la patrat

x²+2x+4=(x+2)²

x²+2x+4=x²+4x+4

2x=4x

-2x=0

x=0

___________

4³ˣ⁻²=8ˣ⁺¹

(2)²⁽³ˣ⁻²⁾=2)³⁽ˣ⁺¹⁾

2⁶ˣ⁻⁴=2³ˣ⁺³

6x-4=3x+3

rezolvi ecuatia

-------------------------------

c.log₅(3x-4)=log₅x

3x-4=x

3x-x=4

2x=4

x=2

d.[tex]\sqrt[3]{x^3+x^2-3x+2} =x[/tex]

Ridici ecuatia   la   a    3-a

x³+x²-3x+2=x³

x²-3x+2=0

Rezolvi ecuatia  de  grd2

log₂(x+2)-log₂(x+1)=2

DVA

x+2>0

x+1>0

x> -1

log₂(x+2)/(x+1)=2

(x+2)/(x+1)=2²

x+2=4(x+1)

x+2=4x+4

x-4x=4-2

-3x=2

x=[tex]\frac{-2}{3} >-1[/tex]

Explicație pas cu pas: